ST260 Formula Sheet
Compatible with Weiers: Intro. to Business Statistics, Duxbury, Inc.

Sample mean:
\[\bar{x} = \frac{\sum x_i}{n} \]

Sample variance:
\[s^2 = \frac{\sum (x_i - \bar{x})^2}{n-1} = \frac{\sum (\text{deviations})^2}{n-1} \]

Computing formula:
\[s^2 = \frac{\sum x_i^2 - \frac{1}{n} (\sum x_i)^2}{n-1} = \frac{\sum x_i^2 - nx^2}{n-1} = \frac{2}{n-1} \]

Sample Standard Deviation:
\[s = +\sqrt{s^2} \]

Standardizing any random variable:
\[Z = \frac{X - \mu}{s} = \left\{ \begin{array}{l}
\text{number of standard deviations} \\
\text{that } X \text{ is from its mean}, \mu.
\end{array} \right. \]

If \(X \) is “normal”, \(Z \) is “standard normal”:
If \(X \sim N(\mu, \sigma) \), then \(Z = \frac{X - \mu}{s} \sim N(0,1) \).

Linear transformation of \(X \):
If \(X \sim N(\mu, \sigma) \), and \(Y = a + bX \), then \(Y \sim N(a + b\mu, |b|\sigma) \).

Regression Analysis

Definition forms:
Equation 1:
\[\sum (x_i - \bar{x})(y_i - \bar{y}) \]
Equation 2:
\[\sum (x_i - \bar{x})^2 \]
Equation 3:
\[\sum (y_i - \bar{y})^2 \]

The following “computational” forms may be easier to use:
\[\sum x_i y_i \left(\frac{\sum x_i}{n} \right) \left(\frac{\sum y_i}{n} \right) \\
= \sum x_i y_i - n \bar{x} \bar{y} \]
\[\sum x_i^2 \left(\frac{\sum x_i}{n} \right)^2 \\
= \sum x_i^2 - n \bar{x}^2 \]
\[\sum y_i^2 \left(\frac{\sum y_i}{n} \right)^2 \\
= \sum y_i^2 - n \bar{y}^2 \]

Estimated “slope”:
\[b_1 = \frac{\sum x_i y_i - n \bar{x} \bar{y}}{\sum x_i^2 - n \bar{x}^2} = \frac{1}{2} \]

Estimated “intercept”:
\[b_0 = \bar{y} - b_1 \bar{x} \]

The Prediction Equation is: Page 612
\[\hat{y} = b_0 + b_1 x \]

ANOVA summary values:
\[SSR = b_1^2 \cdot 2 \]
\[SSE = \sum e_i^2 = \sum (y_i - \hat{y}_i)^2 \]
\[SST = \sum (y_i - \bar{y})^2 \]

Each residual is: \(e_i = y_i - \hat{y}_i \)

\[t \text{-statistic} = \text{number of standard errors the estimated coefficient is from zero.} \]

\[P \text{-value} = \text{the probability of observing a future } t \text{-statistic value as extreme or more extreme from zero, than this one.} \]

Correlation coefficient:
\[r = \frac{1}{\sqrt{2}} \sqrt{3} \]

Relation between slope and correlation: same “signs” and
\[b_1 = r \left(\frac{\text{Std.Dev. } y}{\text{Std.Dev. } x} \right) \]

How good is the regression?
\[\begin{align*}
\text{Coefficient of determination, } r^2: \\
&= \frac{SSR}{SST} = 1 - \frac{SSE}{SST} \quad \text{Page 628}
\end{align*} \]

Standard Error of Estimate:
\[s_{y.x} = \sqrt{\frac{SSE}{n-2}} = \sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{n-2}} \]

Logarithmic transformation:
If the scatterplot of \(Y \) vs. \(X \) shows exponential growth or decay, use “log \(y \)” in place of “\(y \)”:

Regression result: \(\log \hat{y} = b_0 + b_1 x \)

Estimation result: \(\hat{y} = 10^{b_0 + b_1 x} \)
Rules for Probability: Page 167

“and” = “both” = “joint.” (\(\cap\))

“or” = “either or both.” (\(\cup\))

Complement = “will not occur”: \(P(A^c) = P(\text{Not } A)\) Page 160

1 - \(P(A)\)

Addition Law: Page 169

\[P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B) \]

Special Case: If A and B are mutually exclusive, then

\[P(A \text{ or } B) = P(A) + P(B) - 0 \]

Binomial distribution: (discrete) Page 207

\[X \sim \text{Bino}(n, \pi) \]

\[\pi = \text{probability of a success on any one trial;} \]

\[1 - \pi = \text{probability of a failure on any one trial;} \]

\[P(X = x) = \binom{n}{x} \pi^x (1 - \pi)^{n-x}, \quad x = 0, 1, 2, \ldots, n \]

where \(\binom{n}{x} = \frac{n!}{x!(n-x)!}\) is the number of combinations & \(n! = n(n-1)(n-2) \ldots (2)(1)\)

For any binomial, \(\mu_{\text{Bino}} = np, \quad s_{\text{Bino}} = \sqrt{np(1-p)}\) Page 207, 259

Distribution of “sample means” Page 210

\[\mu_X = \mu \quad \text{(The mean of the population of all possible X-bars is the same mean as the original population;)} \]

\[s_X = \frac{s}{\sqrt{n}} \quad \text{its standard deviation is smaller than that of the original population.)} \]

Let \(\bar{X}\) be the ran. var. of the original population.

Let \(\bar{X}\) be the ran. var. of population of all possible \(\bar{X}\) values. When is the population of all possible \(\bar{X}\) variables “normally” distributed?

\[\begin{align*}
\text{\fbox{Anytime the original population is normal.}} & \quad \text{\fbox{Page 286}} \\
\text{\fbox{Anytime the original population is NOT normal.}} & \quad \text{\fbox{Page 286}} \\
\text{\fbox{The } \bar{X}\text{-population is still approximately normal, if } n \text{ is LARGE (} n \geq 30), \text{ by the C.L.T.}} & \quad \text{\fbox{Page 288-90}}
\end{align*} \]

If \(\bar{X} \sim N\left(\mu, \frac{s}{\sqrt{n}}\right)\), then \(Z = \frac{\bar{X} - \mu}{s/\sqrt{n}} \sim N(0, 1)\)

If \(X_1 \sim N(\mu_1, s_1) \text{ a nd } X_2 \sim N(\mu_2, s_2)\), then

\[
(\bar{X}_1 \pm \bar{X}_2) \sim N\left(\mu_1 \pm \mu_2, \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}\right).
\]

Conditional Probability:

\[P(A | B) = \frac{P(A \text{ and } B)}{P(B)} \]

General Multiplication Law:

\[P(A \text{ and } B) = P(B) \cdot P(A | B) = P(A) \cdot P(B | A) \]

Special Case:

If A and B are independent, then

\[P(A | B) = P(A) \quad \text{and} \quad P(B | A) = P(B) \]

\[\therefore P(A \text{ and } B) = P(A) \cdot P(B) \]

Expected Value and Variance for a any discrete random variable X:

\[X = x_1, x_2, \ldots, x_k \]

\[P(X = x_i) = p_i, \quad i = 1, 2, \ldots, k \]

The Expected Value of X is:

\[E(X) = \mu_X = \sum x_i p_i \]

The Variance of X is:

\[\sigma_X^2 = \sum (x_i - \mu_X)^2 p(x_i) \]

The Standard Deviation of X (Risk) is:

\[\sigma_X = \sqrt{\text{Var}(X)} \]

Binomial distribution: (discrete) Page 207

\[X \sim \text{Bino}(n, \pi) \]

\[\pi = \text{probability of a success on any one trial;} \]

\[1 - \pi = \text{probability of a failure on any one trial;} \]

\[P(X = x) = \binom{n}{x} \pi^x (1 - \pi)^{n-x}, \quad x = 0, 1, 2, \ldots, n \]

where \(\binom{n}{x} = \frac{n!}{x!(n-x)!}\) is the number of combinations & \(n! = n(n-1)(n-2) \ldots (2)(1)\)

For any binomial, \(\mu_{\text{Bino}} = np, \quad s_{\text{Bino}} = \sqrt{np(1-p)}\) Page 207, 259

Population Parameter Point Estimator Margin of Error

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimator</th>
<th>m.o.e. at (1-(\alpha))100% confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean, (\mu) if (\sigma) is known: (by the C.L.T.)</td>
<td>(\bar{X})</td>
<td>(Z_{\alpha/2} \cdot \frac{s}{\sqrt{n}})</td>
</tr>
<tr>
<td>Mean, (\mu) if (\sigma) is unknown:</td>
<td>(\bar{X})</td>
<td>(t_{(\alpha/2, n-1)} \cdot \frac{s}{\sqrt{n}})</td>
</tr>
<tr>
<td>Proportion, (\pi): Page 327 (\hat{p} = X/n)</td>
<td>(\hat{p})</td>
<td>(Z_{\alpha/2} \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}})</td>
</tr>
<tr>
<td>Diff. of two means, (\mu_1 - \mu_2): Page 425 (\bar{X}_1 - \bar{X}_2)</td>
<td>(\bar{X}_1 - \bar{X}_2)</td>
<td>(Z_{\alpha/2} \cdot \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}})</td>
</tr>
<tr>
<td>Diff. of two proportions, (\pi_1 - \pi_2): Page 435 (\hat{p}_1 - \hat{p}_2)</td>
<td>(\hat{p}_1 - \hat{p}_2)</td>
<td>(Z_{\alpha/2} \cdot \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}})</td>
</tr>
<tr>
<td>Slope of regression line, (\beta): Page 633 (b_1)</td>
<td>(b_1)</td>
<td>(t_{(\alpha/2, n-2)} \cdot \frac{s_{y</td>
</tr>
<tr>
<td>Mean from a regression when (X = \bar{x}): Page 622</td>
<td>(\hat{y} = a + bx)</td>
<td>(t_{(\alpha/2, n-2)} \cdot \frac{s_{y</td>
</tr>
</tbody>
</table>

Revised Aug '03

Eld Mansfield